Microbiological Production of 9α -Fluorogibberellin A₄, 9α -Fluorogibberellin A₁₄, and other Fluoroterpenoids

By BRIAN E. CROSS* and ANTON ERASMUSON (Department of Organic Chemistry, The University, Leeds LS2 9JT)

Summary 15α -Fluorokaurenoic acid (5) was prepared and fed to fermentations of Gibberella fujikuroi in the presence of AMO-1618; the products have been shown to include 9α -fluorogibberellin A₄ (15), 9α -fluorogibberellin A₁₄ (12), 15 α -fluorofujenal (13), 15 α -fluoro-7 β -hydroxykaurenolide (16), and 1 α -carboxy-2 β -hydroxy-1 β ,4a α dimethylgibb-8-ene-10 β ,9 α -carbolactone (17) which may be a new gibberellin. DURING an investigation of fluorinated kaurenoids¹ as potential inhibitors of the biosynthesis of the gibberellins, 15α -fluorokaurenoic acid (5) was prepared from deacetyl-xylopic acid² by the route shown in the Scheme.

SCHEME. i, CH₂N₂; ii, Et₃NSF₃-CH₂Cl₂, 0 °С (W. J. Middleton, J. Org. Chem., 1975, 40, 574); iii, LiAlH₄; iv, CrO₃-Me₂CO-H⁺.

The fluoro-ester (3) was also prepared by reaction of the alcohol (2) with fluoroamine (cf. ref. 3). The 15-fluorine atom was assigned the α -configuration by analogy with the formation of 15α -fluorokaurene from both 15α - and 15β -hydroxykaurenes¹ and on the basis of n.m.r. data.

Addition of the fluoro-alcohol (4) to a fermentation⁴ of G. fujikuroi (ACC 917) did not greatly reduce the yield of gibberellic acid, but since kaurenol (6) and kaurenoic acid (7) are intermediates in the biosynthesis of the gibberellins,⁵ the possibility that (5) might act as a precursor of fluoro-gibberellins⁶ was examined.

To avoid the problem of separating fluorogibberellins from their proton analogues⁶ (cf. ref. 7) the fluoro-acid (5) was fed to stirred fermentations⁴ of *G. fujikuroi* in the presence of AMO-1618 (10 mg l⁻¹), which blocks the biosynthesis^{4,7} of the gibberellins prior to kaurene. In the first fermentation the acid (5) (390 mg) was added to a dilute broth $(1.5 \ lof medium^4 \ diluted to 4 \ l)$; in the second fermentation the acid (695 mg) was added to a stronger medium (2.5 l of medium⁴ diluted to 4 l). The metabolites were isolated in the usual way⁴ and were characterised by comparison of their i.r., n.m.r., and mass spectra (including accurate mass measurements) with those of the corresponding proton analogues.[†]

The acids from the first fermentation were methylated and purified by preparative layer chromatography (p.l.c.) on Kieselgel GF 254 in ethyl acetate-chloroform (1:3). The least polar band yielded the dimethyl ester of the 15α -fluoro-analogue (8) of the metabolite (9).⁸ The next band afforded dimethyl 9α -fluorogibberellin A₁₄ (10) (15 mg).

The acids from the second fermentation were chromatographed on a Kieselgel column, but the separation was poor. P.l.c. of material from groups of adjacent fractions in ethyl acetate-chloroform (3:7) gave (i) 15α -fluorofujenal (13), (ii) an acid, $C_{20}H_{26}O_5$ (23 mg), and (iii) 9α fluorogibberellin A_4 (15) (20 mg) which was characterised as its methyl ester. The neutral fractions yielded 15α fluoro- 7β -hydroxykaurenolide (16).

The amorphous acid, $C_{20}H_{26}O_5$, was characterised as its methyl ester which showed ν_{max} 3 520, 1 763, and 1 703 cm⁻¹, $\delta 0.70$ (s, $4a\alpha$ -H₃), 1.46 (s, 1β -H₃), 2.23 (d, J 12 Hz, 10-H), 3.50 (d, J 12 Hz, 10a-H), 4.20 (t, J 2.4 Hz, 2-H), 4.61 (m, 9-H), and 5.15 (d, J 1 Hz) and 5.26 (d, J 1.5 Hz) (8-H₂). The n.m.r. data are in good agreement with those of the ester of gibberellin A₁₄ (11),⁹ except for the signal at $\delta 4.61$ and the small couplings observed in the 8-CH₂ group, and together with the i.r. spectrum suggest structure (18) for the ester. This was strongly supported when irradiation of the resonance at $\delta 4.61$ caused both of the methylene doublets to collapse to singlets.

The origin of the acid (17) is uncertain; it is unlikely to be an artefact since the fluoro-acid (5) is stable to acetate ions in acetic acid for 72 h, but it may be a new gibberellin,

† The ¹H n.m.r. spectra of compounds (3), (4), (5), (10), and (14) all show a doublet due to the >CHF grouping at $\delta 4.45-4.86$ (J_{HF} ca. 55 Hz).

since in the second fermentation the AMO-1618 was added after gibberellin production had begun.

The work described above shows that a combination of chemical and microbiological methods (cf. ref. 6) may be applicable to the production of a number of otherwise inaccessible analogues of mould metabolites.

(Received, 11th August 1978; Com. 881.)

- ² D. E. U. Ekong and A. U. Ogan, J. Chem. Soc. (C), 1968, 311. ³ J. H. Bateson and B. E. Cross, J.C.S. Perkin I, 1974, 2409.

- ³ J. H. Bateson and B. E. Cross, J.C.S. Perkin 1, 1914, 2409.
 ⁴ B. E. Cross and P. Myers, Phytochemistry, 1969, 8, 79.
 ⁵ J. MacMillan and R. J. Pryce in 'Phytochemistry', ed. L. P. Miller, vol. 3, ch. 11, van Nostrand, New York, 1973.
 ⁶ J. H. Bateson and B. E. Cross, J. C. S. Perkin I, 1974, 1131.
 ⁷ M. W. Lunnon, J. MacMillan, and B. O. Phinney, J.C.S. Perkin I, 1977, 2308.
 ⁸ B. E. Cross, R. H. B. Galt, J. R. Hanson, P. J. Curtis, J. F. Grove, and A. Morrison, J. Chem. Soc., 1963, 2937.
 ⁹ B. E. Cross, J. Chem. Soc. (C), 1966, 501.